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Abstract Performance analysis is a key process in finance to evaluate or
compare investment opportunities, allocations, or management. The classical
method is to compute the market or sub-market returns and volatilities, and
then calculate the standard performance measure, namely, the Sharpe ratio.
This measure is based on the first two moments of a return distribution. There-
fore, a significant weakness of this method is that it implicitly assumes that the
distribution is Gaussian (if it is not Gaussian, the approach may lead to a bad
fit for the distribution). In fact, risk comes from not only volatility, but also
higher moments of distribution such as skewness and kurtosis. The standard
method to resolve this issue is to use the modified Sharpe ratio; this method
replaces the classical Sharpe ratio volatility with the value at risk. The latter
is computed using the Cornish Fisher expansion, a tool based on the first four
moments of return distribution. This methodology, however, may present a
major pitfall: in some cases, quantile functions do not stay monotone. In this
paper, we show how this tool can be used effectively through a specific proce-
dure, rearrangement. We compare various metrics using rank correlation, and
demonstrate how and in which cases the proposed procedure delivers rank-
ing different from the standard Sharpe ratio ranking. Furthermore, we show
how our technique offers better distribution approximations and is therefore
a more useful performance metric. Institutional investors may find the tech-
nique proposed here useful in that it allows for considering non-normality in
performance analysis.
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1 Introduction

Most financial performance analyses focus mostly on total return figures. The
concern with using absolute returns comes from the structure of the invest-
ment industry. Indeed, most investment managers market their funds through
brokers and investment advisors, whose funding is mostly based on the latest
absolute returns performance. Thus, funds with the highest returns will raise
more capital than those lagging behind. Fund managers are therefore highly
incented to exhibit high absolute returns. Brokers and investment advisors for
the most part do not act differently. They mostly do not discuss risk because
of the nature of their commission-based compensation structure and most of
them are paid only when the sale of a financial product is completed. This
approach does not consider the link between return and risk, in contrast to
Markowitz (1952). Nevertheless, only absolute returns are still widely com-
pared in the field. Thus, in terms of management and allocations, absolute
returns are superior to competition.

Investments can be compared in a straightforward manner only in very special
cases; for example, when risks are equal, a higher expected return is always
preferable, but when the expected returns are equal, a lower risk is always
preferable. These matters could become complicated if we consider two or
more markets with different expected returns and risks. Undoubtedly, such
naïve comparisons would become extremely misleading if the funds or indices
exhibit different risk characteristics. Investors often evaluate the performance
of different portfolio strategies in order to compare or rank them. Thus, in-
vestment by nature is a two-dimensional process based on returns as well as
the risk taken to achieve those returns. Specifically, given that a higher return
(risk) is always (never) desirable, the next question is what additional return
would be a sufficient compensation for an additional risk. This is precisely
where risk-adjusted performance measures become helpful. Intuitively, a per-
formance measure should consider the “reward,” or upside potential, as well as
the strategic risk, which has to be evaluated.

Combining the return and risk into a single useful risk-adjusted number is one
of the strategic performance measurement tasks. Performance measures give
the ratios of reward over risk. Basically, a good risk measurement must be able
to compare the performance of markets with similar risk characteristics, as well
as the performance of other funds with different risk characteristics. Even for a
large number of performance measures, the Sharpe ratio would practically be
the most commonly used risk-adjusted performance metric measure. Defined
by the Nobel laureate Sharpe (1966), the Sharpe ratio measures the “excess
return per unit of volatility.” It is calculated by dividing the excess return of
a market or fund by its volatility. Algebraically, it can be given by

SR =
rP − rf
σP

, (1)
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where rP is the average return of portfolio P, rf is the risk-free rate, 1 and
σP is the standard deviation of the portfolio return P.2 By analyzing this risk-
adjusted performance ratio, we can identify the markets or categories that
outperformed others. However, this method has an important weakness: it
presupposes the normal return distribution since it considers only the first
two moments of distribution.

When asset returns can reasonably be considered normally distributed, the
Sharpe ratio would be useful because the distribution of returns will then be
completely described by its mean and volatility (inputs to equation 1).3 In case
the return distribution cannot be considered as normal (such as a hedge fund,
real estate, or option), the performance measures based on non-normality will
have to be considered. In an attempt to solve the non-normality issue, Favre
& Galeano (2002) and Gregoriou & Gueyie (2003) modified the traditional
Sharpe ratio, to obtain the modified Sharpe ratio (mSR).4 This is defined as
the ratio of the excess return of a market, an asset, or a fund to its Value at
-Risk, or V aR, where V aR is computed using the Cornish Fisher (CF) expan-
sion and denoted as mV aR (the CF expansion is defined in section ).

Informally, V aR is the largest percentage loss with a given probability (confi-
dence level) likely to be suffered on a portfolio position over a given holding
period. In other words, for a given portfolio and time horizon, with the selected
confidence level α ∈ (0, 1), V aR is defined as the threshold value, assuming
no further trade, at which the probability of the mark-to-market loss in the
portfolio exceeding this V aR level is exactly the preset probability of loss α.5
Thus, V aR is the quantile of the projected distribution of losses over the target
horizon, in that if α is taken as the confidence level, V aR will correspond to
the α quantile. By convention, this worst loss is always expressed as a positive
percentage in the manner indicated. Thus, in formal terms, if we take L to
be the loss, measured as a positive number, and α to be the confidence level,
then V aR can be defined as the smallest loss—in absolute terms—such that

P (L > V aR) ≤ α. (2)

1 The choice of risk-free rate has recently been debated. We do not discuss this point here because
it is another topic.

2 As the numbers are typically expressed on an annual basis, the Sharpe ratio is also expressed on
an annual basis (particularly because the increases in standard deviation are not linear).

3 From recent evidence, the Sharpe ratio can give fund rankings almost identical to alternative
performance measures (see Eling & Schuhmacher, 2007).

4 This performance metric is part of the RhoV aR performance metric class

ρV aRα =
rP − rf
V aRα

,

,defined as the ratio of the excess return of a market, an asset, or a fund to its Value at Risk.
5 Note that V aR provides no information on the likely severity of the loss by which its level will be

exceeded.
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A more detailed definition of V aR can be found in Jorion (2007) or Christof-
fersen (2012). 6

Over the past few years, the popularity of downside risk measures (including
V aR) has been growing. Today, these metrics are replacing standard deviation
to evaluate the risk of investments. The reason behind the growing interest in
downside risk measures is the decision of several regulators (Basel and Sol-
vency) to rely almost solely on downside risk metrics such as V aR or its
derivative the expected shortfall for calculation of the required capital.7

V aR is mainly estimated using one of the following three methods: historical,
parametric (variance–covariance), and Monte Carlo simulations. The advan-
tages and drawbacks of these methods are extensively discussed in (Christof-
fersen, 2012). The mV aR in this work is computed using CF expansion.

The modified Sharpe ratio, denoted as mSRα in the literature, where α is the
probability level, is defined as

mSRα =
rP − rf
mV aRα

. (3)

Here, rP is the average portfolio return, rf is the risk-free rate, and mV aR is
the way we compute V aR, which relies neither on strong assumptions (such
as the need for normal distribution) nor on excessive data (as do historical
methods). This is based on the CF expansion. This approach enables us to
approximate the true (unknown) return distribution. It takes the form of a
Gaussian quantile estimation plus some correction terms based on the return
distribution’s skewness and kurtosis. mV aR is a convenient and useful tool
for practitioners and academics owing to its precision and explicit form. More-
over, it is straightforward to compute and interpret. Thus, CF expansion is a
relatively easy and parsimonious approach to deal with non-normality in asset
prices or returns. The use of mSR clearly shows that risk comes from volatil-
ity as well as higher moments such as skewness and kurtosis (an overview of
skewness and kurtosis parameters is provided in Appendix A). In particular,
this study shows why this measure is preferable to the more traditional one

6 In terms of gain rather than loss, the V aR at the confidence level α for the market rate of return X
whose distribution function is denoted as FX(x) ≡ P [X ≤ x], and whose quantile at level
α is denoted as qα(X), is

−V aRα(X) = sup {x : FX(x) ≤ α} ≡ qα(X).

7 Note that all risk metrics are broadly criticized for their reliance on past returns and data. Dario
Cintioli, who heads the risk analysis at StatPro, says that “the main problem with V aR,
or any risk measure, is that you’re using historical data in some way.” Indeed, a conflict
arises when choosing how much data to analyze. When excessive data are chosen, (from
past experience) the results may be irrelevant. The opposite may be true when we consider
recent history.
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when properly used.

Even though mV aR is a popular and useful technique, its definition domain
(see section ) restrains its use. Typically (and unfortunately), the literature
does not specify the CF expansion’s (see for instance Lee & Higgins, 2009;
Christoffersen, 2012; Hull, 2012) definition domain, and so this could become
a possible pitfall that must be addressed. Thus, CF expansion is generally
restricted to cases where the distribution is close to normal. A solution to this
issue has been proposed by Chernozhukov et al. (2010b). Their methodology
enables the proper computation of mV aRs, irrespective of the distributions
(see Amédée-Manesme et al., 2015).

This study builds on the literature as follows. Eling & Schuhmacher (2007)
and Pedersen & Rudholm-Alfvin (2003) use hedge fund returns to discuss the
suitability of classic and newer measures to compare hedge funds (see section
2), but we analyze simulated returns and show how to properly use the modi-
fied Sharpe ratio. Our findings can be summarized as follows. First, even when
the standard Sharpe ratio gives a virtually identical rank ordering, with a light
deviation in return distribution from the Gaussian, the modified Sharpe ratio
becomes unavoidable as soon as the distribution deviates from the normal.
Second, the rearrangement procedure should be adopted when the threshold
is low (below 1%) and/or the distribution is asymmetric.

The remainder of this paper is organized as follows. Section 2 presents a lit-
erature review, while section 3 presents the CF expansion, its pitfall, and the
solution, emphasizing on the proper use of this tool. Section 4 implements the
proposed methodology and discusses the empirical results.

2 Literature review

The literature on performance measures has largely focused on examining
whether or not managers can beat the market (Markowitz, 1952; Sharpe, 1966;
Jensen, 1968; Malkiel & Fama, 1970). When maket distributions are symmet-
ric and the classical mean-variance capital asset pricing model (CAPM) is
valid, performance measures can be computed directly. The most commonly
employed performing measure is the Sharpe ratio (Sharpe, 1966)8 (and its
derivation of the Treynor ratio developed by Treynor, 1965). Another com-
mon approach is Jensen’s measure, or Jensen’s alpha (developped by Jensen,
1972). This is a risk-adjusted performance measure representing the average

8 The Sharpe ratio determines the excess returns that an investment can provide above the risk-free
rate for each unit of volatility. Although this ratio is often used as a performance metric,
it has several weaknesses; for example, it considers only risks and returns, and does not
account for liabilities, differentiate between downside and upside possibilities, or perform
well for non-normal distributions.
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return on a portfolio or investment above or below that predicted by the capi-
tal asset pricing model, given the portfolio or investment beta and the average
market return. These methodologies hold when the returns can be considered
normally distributed. However, when the returns are asymmetric, these mea-
sures cease to capture the essential distributional features (see Pedersen et al.,
2002). Thus, other approaches need to be used.

Since the classic Sharpe ratio cannot properly evaluate assets exhibiting non-
normal distribution, several alternative performance measures have been sug-
gested in the literature (some are still under debate). Thus, some ratios, such
as the Omega ratio, Sortino ratio, Kappa ratio, upside potential ratio, Calmar
ratio, Sterling ratio, Burke ratio, excess return on V aR, conditional Sharpe
ratio, and modified Sharpe ratio (the one analyzed in this work) have been
proposed to replace the Sharpe ratio and overcome some of its pitfalls. In a
comprehensive review, (Eling & Schuhmacher, 2007) analyze and compare 13
different performance measures Pedersen & Rudholm-Alfvin (see also 2003,
that can be used to select a risk-adjusted performance measure). However, all
these metrics must be used with care since the evaluation of returns has been
shown to be influenced by the choice of performance measure (Zakamouline,
2010). In this work, we consider the modified Sharpe ratio based on modified
V aR, that is, the V aR computed using CF transformation.

The methods to compute V aR or determine the distribution quantiles have
already been closely studied by academicians as well as practitioners since the
introduction of V aR into the current banking system (For a comprehensive
review of the methods, see Christoffersen, 2012; Jorion, 2007). A strand of the
literature focuses on how to measure V aR. For example, Linsmeier & Pear-
son (2000), Duffie & Pan (1997), and Engle & Manganelli (1999) are general
papers on measuring V aR. More specific studies have examined the primary
methods, such as the Monte Carlo simulation by Pritsker (1997), Johnson
transformations by Zangari (1996b), CF expansions by Zangari (1996a) and
Fallon (1996), Solomon-Stephens approximation by Britten-Jones & Schae-
fer (1999), saddle-point approximations by Feuerverger & Wong (2000), and
extreme value theory by Longin (2000). The theoretical properties of V aR
evaluation have been reported by Artzner et al. (1999), Cvitanić & Karatzas
(1999), and Wang (1999). Studies have also considered V aR optimization for
portfolio or risk reduction. Gourieroux et al. (2000) is an appealing work on
the sensitivity of V aR.

A small strand of the literature has sought to improve V aR estimation through
the use of CF expansion. Pichler & Selitsch (1999) made a comparative study
of the following five V aR methods in the context of portfolio and options:
Johnson transformation, variance–covariance analysis, and the three CF ex-
pansions of second, fourth, and sixth orders. They concluded that the sixth
order CF expansion is the best among the analyzed approaches. In this re-
gard, we can also refer to the works of Mina & Ulmer (1999) and Feuerverger
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& Wong (2000). Jaschke (2001) considered the properties of CF expansion
and its underlying assumptions in the context of V aR, specifically focusing on
non-monotonicity of the distribution function, where convergence cannot be
guaranteed. 9 Jaschke discussed how the conditions for applying the CF ap-
proach make its use difficult in practice (we discuss the points in this paper).
However, he demonstrated that when a dataset complies with the required
conditions, the accuracy of CF expansion is generally more than sufficient to
satisfy one’s needs; moreover, it is faster than the other approaches. More
recently, citepeling2007does analyzed and compared 13 different performance
measures Pedersen & Rudholm-Alfvin (see also 2003, to select a risk-adjusted
performance measure). However, all these metrics should be used with care be-
cause the evaluation of returns has been found to be influenced by the choice
of performance measure (Zakamouline, 2010). Amédée-Manesme et al. (2015)
used CF expansion and the so-called rearrangement procedure to calculate the
direct real estate V aR. They calculated a rolling V aR over time for real es-
tate returns and showed how CF expansion can be used to adequately account
for the non-normality of returns in commercial real estate returns. Finally,
Amédée-Manesme et al. (2019) proposed the use of response surface method-
ology to correct the CF parameters.

In this work, we consider the modified Sharpe ratio. This ratio is similar to
the standard Sharpe ratio, is popular among practitioners, exhibits an explicit
form, and is based on V aR–a metric proposed by regulators (Basel II and
III, or Solvency II). It also relies on the first four moments (these are easy to
understand and analyze), and is straightforward to compute and interpret.

3 The CF expansion

This study shows how to properly use the modified Sharpe ratio based on
mV aR risk measurement. The mV aR measurement is based on CF expan-
sion. However, CF expansion should be used with caution, especially with
regard to two points: the validity domain of CF expansion must be carefully
checked, and the quantile function (cumulative distribution function) could be
non-monotone and must be rearranged.

The mV aR calculation depends on the CF expansion. In short, CF expansion
transforms naïve Gaussian quantiles by the skewness and kurtosis coefficients
chosen to characterize the true distribution. This expansion is a simple poly-
nomial function based on the corresponding unit normal quantile Taylor series
(for more precision, see Stuart & Ord, 2009), where the coefficients of each
resulting term are functions of the true distribution moments under consid-
eration. CF expansion is useful because it allows for obtaining more accurate

9 For a detailed discussion, see the chapter by Jaschke and Jiang in Härdle (2009).
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results compared to those obtained using the central limit theorem (CLT)
approximation. For a demonstration of the greater accuracy provided by CF
expansion compared to CLT approximation, see, for example, Chernozhukov
et al. (2010b).

For any α ∈ (0, 1), the upper αth-quantile of Fn is defined as qn(α) =
inf {x : Fn(x) ≥ α}, where Fn denotes the cumulative distribution function
of ξn = (

√
n/σ)(X̄−µ), and X̄ is the sample mean of independent and identi-

cally distributed observationsX1, . . . , Xn. If zα denotes the upper αth-quantile
of N(0, 1), the fourth-order CF expansion can be expressed as

qn(α) = zα+
1

6
√
n

(z2α−1)S+
1

24n
(z3α−3zα)(K−3)− 1

36n
(2z3α−5zα)S2+o(n3/2),

(4)
where S and K are the skewness and kurtosis of the observation Xi, respec-
tively.

More simply, we denote the CF quantiles by zCF,α, to obtain the following
expression for a normalized CF quantile at the probability level α:

zCF,α = zα+
1

6
(z2α−1)S+

1

24
(z3α−3zα)(K−3)− 1

36
(2z3α−5zα)S2,∀α ∈ (0, 1),

(5)
where S and K denote the skewness and kurtosis coefficients of the true dis-
tribution, respectively. The corresponding modified CF quantile then becomes

qCF,α = µ+ zCF,ασ, ∀α ∈ (0, 1), (6)

and the expression for V aR becomes

V aRCF,α = −qCF,α∀α such that qCF,α < 0. (7)

One can straightforwardly see that in the presence of an underlying Gaussian
distribution (S = 0 and K = 3), equation (5), will reduce to the Gaussian
quantile (and CF expansion will obviously be used when the distribution is
normal).

CF expansion will thus approximate the quantile of a true distribution by
using higher moments (skewness and kurtosis) of that distribution to adjust
for the distribution’s non-normality. Since the true distribution moments can
be estimated in the standard manner by the sample skewness S and sample
kurtosis K obtained from the data, these can be substituted into equation
(5) to estimate the unknown quantiles (V aR) of the true distribution. CF ex-
pansion thus allows for considering higher-order distributional characteristics
when performing quantile computation, so that the risky assets exhibiting non-
normal distribution can be treated accurately. The CF approach thus offers
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several advantages, such as its relative easy to implement and the skewness
and kurtosis it allows for in V aR estimation.

As suggested, the CF approach leads to approximations closer to the true law
compared to the traditional Gaussian approach, often to a dramatic degree.
This is illustrated below in figure 1 for a chi-squared distribution with five
degrees of freedom. Obviously, the CF methodology results cannot be better
than the true distribution, but they do approach the true distribution far more
closely than the Gaussian approximation. From the closeness of the CF ap-
proximations to the theoretical distribution, one can appreciate the power of
this tool.

Fig. 1: CF approximation for a chi-squared distribution with five degrees of
freedom µ = 5; σ2 = 10; S = 1.27; K = 5.4

Although CF expansion has proven to be a useful technique, the permitted
values of the true distribution’ moments have constraints by which the CF ap-
proximation itself leads to a true distribution. Relation (5) in general gives a
non-monotonic character to zCF ; that is, the true distribution’ ordering of the
quantiles is not preserved, violating the basic condition that must be satisfied
for the resulting CF approximation to be a proper cdf. Barton & Dennis (1952),
Draper & Tierney (1973), and Maillard (2012), among others, study the CF
expansion validity domain. Monotonicity requires a non-negative derivative of
zCF,α relative to zα, which leads to the following constraint, implicitly defining
the CF expansion validity (D) domain. :10

S2

9
− 4

(
K − 3

8
− S2

6

)(
1− K − 3

8
− 5S2

36

)
≤ 0. (8)

10 For example, inequality (8) implies a kurtosis coefficient higher than 3 (a positive excess of kurtosis),
indicating a leptokurtic distribution. Thus, unadjusted CF expansion is not appropriate in
the presence of thin tails.
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Thus, if (S,K) ∈ D, the CF quantile function is monotonic, and otherwise,
the CF method is inapplicable. Indeed, in this case, the quantile at a higher
threshold can be smaller in absolute terms than that at a lower threshold
(| qα1

|<| qα2
| ∀α1 > α2), which is obviously undesirable for any cumulative

distribution function, and even less desirable when used for risk measurement.
In practice, this constraint is rarely considered because S and K are generally
considered small in finance. As stated above, the literature is generally silent
on the CF definition domain.

For instance, consider a distribution with a skewness coefficient of 0.8 and
kurtosis of 2. These parameters correspond to a thin-tailed and right-skewed
distribution, respectively. Since these parameters do not belong to the D va-
lidity domain, the zCF,α quantile function is not monotonic. However, by ap-
plying the rearrangement procedure to this quantile function, we obtain z̃CF,α,
the corrected Gaussian quantile CF transformation. Focusing on the less than
25% probabilities, figure 3 shows the impact of this procedure. Note that it
is not always possible to compute the non-rearranged CF probability density
function because it could result in negative probabilities.

Fig. 2: The rearrangement procedure (α < 25%)

Furthermore, note that the discrepancy between two quantile functions, the
rearranged and non-rearranged ones, is most noticeable for the smallest prob-
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abilities, that is, the most important ones for V aR computation.11

To solve this issue, Chernozhukov et al. (2010a,b) proposed a procedure called
increasing rearrangement to restore monotonicity. This procedure has been
used in (Amédée-Manesme et al., 2015) to compute the V aR for real estate
investment (whose returns exhibit abnormal behavior). Simply stated, rear-
rangement is a sorting operation: given the values of a dataset, the procedure
simply sorts the values in an increasing order. Thus, the rearranged func-
tion is created (the procedure is broadly presented in Appendix B). As these
authors demonstrate, the rearrangement procedure alters the non-monotone
approximations such that they become monotonic. In our problem, this would
correspond to the ascending sorting of quantile function qCF,α. Furthermore,
and most importantly, as Chernozhukov et al. (2009) demonstrated, besides
restoring monotonicity, rearrangement improves the estimation properties of
the approximation. Indeed, Figure shows how the non-rearranged CF quan-
tiles function leads to a rather poor estimation of the ideal quantiles. However,
the rearranged quantiles are very close to the theoretical ones, clearly showing
how the rearrangement can improve estimation quality. The argument is pre-
sented in Chernozhukov et al. (2010b). The improvement occurs because the
rearrangement results in monotonicity, which necessarily brings the originally
non-monotone approximations closer to the true monotone target function.12
This improvement occurs because the rearrangement necessarily brings the
non-monotone approximations closer to the true monotone target function.

This work uses the rearrangement procedure, which results in the proper use
of CF expansion. We show how the proper use of CF expansion in the Sharpe
ratio leads to different ranking in some cases.

4 Application

In the previous sections, we introduced the SR and mSR performance met-
rics. We showed the difficulties in proper computation of mSR by relying on
mV aR, and introduced a solution—the so-called rearrangement. Our aim here
is merely to apply our methodology to various distributions and illustrate how
these metrics react. More precisely, we are interested in the parameters, and
not in the distribution. Indeed, since SR and mSR are based on the first two
and four moments of the distribution respectively, we will concentrate on that

11 See the first figure in Chernozhukov et al. (2010b). Note that the non-rearranged quantile func-
tion might be even more severely non-monotonic (and therefore provide poorer distribution
function approximations) than the one presented in figure 3. Note that z̃CF,0.001 = −1.4,
whereas zCF,0.001, which is equal to −0.3, is clearly biased.

12 Note that the above example showed improved accuracy rearrangement that is guaranteed to
restore monotonicity of the ideal distribution approximation and also improve the accuracy
of that approximation compared to that achieved without rearrangement.
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point.

In this section, we analyze the impact of various distributions. First, we sim-
ulate an almost normal distribution. The intuition is that moving away from
this situation toward either skewness or kurtosis would significantly change the
result. Second, we set the symmetry to 0 (the normal distribution value) and
allow the kurtosis to move. Finally, we set the kurtosis to 3, and the simulated
distribution will be asymmetric.

Our approach is particularly appropriate when the studied distribution is not
normal. However, it remains relevant even in the presence of a normal dis-
tribution. Indeed, in this case, the skewness and kurtosis are set to 0 and 3,
respectively, and equation 5 will add to the Gaussian quantile (zα). Thus, de-
termining the return distribution is not key to the process. One must be able to
determine the first four moments of the dataset. Furthermore, the transformed
mV aR performance measures can contribute because all the distribution mo-
ments are taken into account and quantile estimation is more precise. More
specifically, the further we move away from the normal case, the more impor-
tant the improvement of our approach.

Our aim here is to compare the use of the following three performance mea-
sures: the return, Sharpe ratio (or more simply, volatility), and modified Sharpe
ratio. More precisely, we focus on how the modified Sharpe ratio is computed.
We therefore consider three variations in the modified Sharpe ratio—and thus
five performance measures—that use a different method to compute mV aR:
the modified Sharpe ratio computed under the normality assumption (hence,
only with µ and σ), denoted as NmSR, the standard modified Sharpe ratio
(with CF), denoted as mSRCF , and the rearranged modified Sharpe ratio,
(mSRCF,reag).

The methodology consists of simulating 100 points of various distributions for
20 potential assets (which are to be compared) 1000 times. The simulated
distribution replaces the empirically observed return series. This methodology
is more convenient in our context than considering empirical data. Indeed,
we can control the impact of the different parameters of interest, in our case,
mainly S and K. We then compute the five performance metrics from the
generated distributions and determine the corresponding ranks.

To capture the performance measures’ degree of proximity, we use the rank
correlation as an indicator of the proximity. All rank correlations can then
be synthesized into a matrix (the rank correlation matrix). By construction,
all the simulated distributions lead to one single rank correlation matrix, like
a point estimation. In order to estimate all the correlation distributions, we
have to replicate this random experiment several times. The average of these
simulated matrices converges to the expected rank correlation matrix. More-
over, the replications allow us to estimate the cdf (or the pdf) of each matrix
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element. Rank correlation can be used to measure the relationship between
the different rankings of the same variable. Thus, the rank correlation coeffi-
cient measures the degree of similarity between the two rankings. In this study,
we rely on Spearman’s rank correlation coefficient. If two measures are con-
ceptually equivalent, the theoretical rank correlation is equal to 1. This value
becomes -1 in case of perfectly opposite ranks. A value of 0 corresponds to the
situation where the two metrics are not linked at all.

Finally, in the next subsections, we compare the rankings obtained with the
return, the SR, the mSR computed with the normal assumption (NmSR),
and the mSR computed with the CF (mSRCF ) and finally corrected with
the rearrangement procedure (mSRCF,reag) for five different types of distribu-
tions: a nearly normal, a very leptokurtic (with skewness fixed to 0), a slightly
asymmetric, and two highly asymmetric distributions.

Furthermore, note that the use of the Sharpe ratio and modified Sharpe ra-
tio requires one to determine a risk-free rate (i) and a confidence level (or
threshold) (ii).

i The choice of risk-free rate is an interesting issue for academicians and
practitioners: the risk-free rate is often presumed to be given and/or easy
to obtain. From a theoretical perspective, the risk-free rate is the rate of
return of an investment with zero risk over a specified period of time. How-
ever, in reality, a risk-free rate does not exist, because all investments carry
some amount of risk.

In practice, both academics and practitioners use government security rates
as the risk-free rates. In the context of this study, we consider the case of
a foreign investor investing internationally and having the choice of a risk-
free asset (national or local investors may face more limitations on their
choice of risk-free asset). We choose the risk-free rate of 2% because an
international investor can find assets with very limited risk for an annual
return of about 2%.

ii Using the modified Sharpe ratio raises another issue, the choice of confi-
dence level (the choice may appear a bit arbitrary). In particular, the choice
of confidence level may have a strong impact on the determination of V aR,
especially when the distribution exhibits high kurtosis. Risk models based
on V aR presume the confidence level chosen. However, in practice, the jus-
tification of a particular confidence level is very difficult. Most textbooks
illustrate V aR using a confidence level of 5% because it makes the com-
parison of two standard deviations easier. Several academic papers use a
confidence level of 1% or 0.5%; these values are recommended respectively
by the Basel and Solvency regulations. More recently, V aR is computed
at increasingly lower levels. Indeed, with the development of more precise
and improved databases, the extreme value theory, block maxima models,
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and peaks over threshold models are increasingly used, and very low levels
of V aR are becoming more common (see, for instance, Abad et al., 2014).

The choice of confidence level is not the primary topic of this paper, but
we need to note that V aR computations under normal assumption give
the same ranking irrespective of the threshold level. This will differ if the
normal assumption is removed. This paper analyzes the sensitivity of the
threshold on metrics (and therefore rankings).

4.1 Nearly Gaussian case

In this section, we simulate a normally (almost) distributed series (a purely
normal distribution is not interesting in our case), with the distribution slightly
deviating from the normal kurtosis and skewness set to 0. The variation in kur-
tosis will be automatically generated by sampling. With a sample size of 1000,
we can ensure K values close to the Gaussian value.

Table 1 confirms the intuition. All the rankings, whatever be the metrics, are
almost the same as for a correlation around 1. Since there is no rearrangement
(or no need to rearrange), mSRCF and mSRCF,reag are perfectly equal: the
rankings are the same.

R SR NmSR mSRCF mSRCF,reag
1.000 0.994 0.994 0.978 0.978
0.994 1.000 1.000 0.998 0.998
0.994 1.000 1.000 0.998 0.998
0.978 0.998 0.998 1.000 1.000
0.978 0.998 0.998 1.000 1.000

Note: The correlations are similar, as with other values
of α.

Table 1: Rank Correlation Matrix — α = 0.001, Gaussian Case

4.2 From NmSR to mSRCF : symmetric distribution with varying kurtosis

In order to simulate a perfectly symmetric distribution, we randomly generate
a sample with length equal to one half of the sample size value, denoted here-
after as n, and the other half obtained being symmetric to 0. Thus, for an even
sample with size n, we generate n/2 pseudo-random numbers (x1, . . . , xn/2);
the whole sample is by construction (x1, . . . , xn/2,−x1, . . . ,−xn/2). This en-
sures a skewness equal to 0. Note that this result holds whatever be the dis-
tribution used for simulation. µ is set to 0.03. The standard deviation is set
0.2 (or 20% of volatility). The values of the simulated kurtosis can differ very
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much, but can never be 3 (higher or smaller).

Several comments can be drawn from Tables 2 to 5. First, the correlation
between NmSR and mSRCF are henceforth not the same. This result is as
expected since the simulated distribution is not henceforth Gaussian. Second,
this difference increases as the threshold decreases. Indeed, in this section, the
distribution is symmetric (S = 0) and only the kurtosis varies. As the kurtosis
mainly impacts the tails, the correlation is lower for a lower threshold. α = 0.05
is not small enough to observe fatter tails. This latter comment show why the
confidence level should be computed at a very low level, and not at 5%, as usu-
ally done in textbooks to compare the well-known normal distribution (Acerbi
& Tasche, 2002, among others criticized the choice of 5%). Finally, these ta-
bles demonstrate howmSRCF is more suitable than the standard Sharpe ratio
and NmSR, whatever be the distribution. In fact, when the distribution can
be considered as normally distributed, mSRCF gives the same results as the
other metrics and can better capture the difference when the distribution is
not anymore normally distributed. Thus, this metrics could be a better choice.

R SR NmSR mSRCF mSRCF,reag
1.000 0.012 0.012 0.019 0.019
0.012 1.000 1.000 0.990 0.990
0.012 1.000 1.000 0.990 0.990
0.019 0.990 0.990 1.000 1.000
0.019 0.990 0.990 1.000 1.000

Table 2: Rank Correlation Matrix — α = 0.05, symmetric distribution,
varying K

R SR NmSR mSRCF mSRCF,reag
1.000 0.012 0.012 0.004 0.004
0.012 1.000 1.000 0.820 0.819
0.012 1.000 1.000 0.820 0.819
0.004 0.820 0.820 1.000 1.000
0.004 0.819 0.819 1.000 1.000

Table 3: Rank Correlation Matrix — α = 0.01, symmetric distribution,
varying K

From a computation of the correlation distribution in Figure 3, we find the
correlation distributions not symmetric, but highly skewed to the left. This is
more pronounced for a lower α; this is so because the difference between SR
and mSR is more pronounced deeper in the tail (in this section, the distribu-
tion is symmetric, with only the kurtosis varying). Note that this effect tends
to decrease when the number of assets increases (see Figure 9b in Appendix
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R SR NmSR mSRCF mSRCF,reag
1.000 0.012 0.012 0.002 0.002
0.012 1.000 1.000 0.709 0.709
0.012 1.000 1.000 0.709 0.709
0.002 0.709 0.709 1.000 1.000
0.002 0.709 0.709 1.000 1.000

Table 4: Rank Correlation Matrix — α = 0.005, symmetric distribution,
varying K

R SR NmSR mSRCF mSRCF,reag
1.000 0.012 0.012 -0.003 -0.003
0.012 1.000 1.000 0.505 0.505
0.012 1.000 1.000 0.505 0.505
-0.003 0.505 0.505 1.000 1.000
-0.003 0.505 0.505 1.000 1.000

Table 5: Rank Correlation Matrix — α = 0.001, symmetric distribution,
varying K

C). However, the distribution of correlations tends to become less correlated
when the number of assets is very low, as illustrated in Figure 9a in Appendix
C, where the graphic is built with only five assets. Indeed, when few assets are
considered, the chance of having a strong correlation is obviously lower than
that when numerous assets are taken into account.

Fig. 3: Distributions of correlations between NmSR and mSRCF , S = 0.
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4.3 From mSRCF to mSRCF,reag: asymmetric distribution with varying
kurtosis

4.3.1 Example of non-monotone quantile and positive V aR

Note that we cannot compute mSR with too low thresholds for a comparison.
Indeed, since CF expansion does not give the monotone function of a quan-
tile, the quantile corresponding to a low threshold may be positive, but the
corresponding V aR may not exist (V aR is a loss and cannot be positive). In
these cases, rearrangement is the key. To illustrate this, we compute Figure 4
using a particular example, where the skewness and kurtosis are set to 1.8 and
3, respectively (the distribution is right-skewed). This graph shows how the
quantile function resulting from a non-rearranged CF expansion can lead to
a non-monotone function. This result is obviously misleading and false, since
a lower threshold V aR may be higher than a higher threshold V aR. For in-
stance, for α = 5%, we have q0.05 = −1.645. The CF quantiles are respectively
qCF
0.05 = −1.072 and qCF ,reag

0.05 − 1.283 after rearrangement.

Fig. 4: Normal CF and rearranged CF quantiles functions with S = 1.8 and
K = 3

In Figure 4, when the two curves cannot be differentiated, the rearrangement
procedure would be useless because the ordering of quantiles is not affected
by the CF procedure (in such cases, the ordering of quantiles is already in-
creasing). However, by differentiating the two curves (particularly in the lower
tails), we find the importance of rearranging (or sorting) the CF procedure
results. In particular, it has considerable impacts on the rankings. This will
be illustrated in the next section.
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4.3.2 Asymmetric distribution, K=3

In this subsection, we simulate the skewness values uniformly in the range
[ 1.6; 2 ]. The kurtosis is set to 3. Thus, the ranks will change when the dif-
ference between the two CF quantiles is sufficiently high. The values used for
this example have no particular interest, except to illustrate the impact of
the rearrangement. The estimated correlations displayed in Tables 6 and 7 are
computed for α = 5% and 4%, respectively. The rearrangement modifies the
ranks compared to NmSR, but more importantly compared to mSRCF . Note
that the spread between the correlation ranks increases as the skewness values
increase and decrease for smaller values. For instance, with S ∼ U [ 1.3; 2.3 ],
the correlation drops to 0.327 (increasing the uniform range for skewness re-
duces the correlation). To conclude, note that with S ∼ U [ 0; 3 ], the correlation
drops to 0.100.

For a α higher than 1, the correlation tends toward 1, whereas when α tends
toward 0, the correlation does not exist anymore. Indeed, the V aR computed
with CF is positive as the quantile is 0.935 instead of −1.539 after the rear-
rangement.

R SR NmSR mSRCF mSRCF,reag
1.000 0.004 0.004 0.004 0.006
0.004 1.000 1.000 0.982 0.673
0.004 1.000 1.000 0.982 0.673
0.004 0.982 0.982 1.000 0.680
0.006 0.673 0.673 0.680 1.000

Table 6: Rank Correlation Matrix — α = 0.05, asymmetric distribution
(S ∼ U [ 1.6; 2 ]), K = 3

R SR NmSR mSRCF mSRCF,reag
1.000 0.004 0.004 0.005 0.010
0.004 1.000 1.000 0.997 0.611
0.004 1.000 1.000 0.997 0.611
0.005 0.997 0.997 1.000 0.609
0.010 0.611 0.611 0.609 1.000

Table 7: Rank Correlation Matrix — α = 0.04, asymmetric distribution
(S ∼ U [ 1.6; 2 ]), K = 3

Finally, we simulated a negative skewness to illustrate how the rearrangement
impacts the ranking of a negatively asymmetric distribution. To do so, the
skewness values were simulated uniformly in the range [−2;−1.6 ] with the
kurtosis still set to 3. The results are presented in Table 8 for α = 0.3%. The
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Fig. 5: Distributions of correlations between mSRCF and mSRCF,reag,
asymmetric distribution

results are in line with the previous case and show the impact of the CF rear-
rangement procedure. The rank correlation is different between mSRCF and
mSRCF,reag, but with lower difference. This is so because the rearrangement
really begins from a much smaller threshold (α) than in the previous case.
This is illustrated in Figure 6. Note that the non-rearranged CF quantile once
again leads to a non-negative V aR. Therefore, the correlation between NmSR
and mSRCF,reag is higher than the correlation between NmSR and mSRCF ,
or mSRCF and mSRCF,reag. This comes from the signs of the quantiles, which
are always the same for NmSR and mSRCF (given the thresholds computed
here). All this shows the importance of the rearrangement procedure when
needed.

R SR NmSR mSRCF mSRCF,reag
1.000 -0.017 -0.017 -0.044 0.031
-0.017 1.000 1.000 0.390 0.339
-0.017 1.000 1.000 0.390 0.339
-0.044 0.390 0.390 1.000 -0.652
0.031 0.339 0.339 -0.652 1.000

Table 8: Rank Correlation Matrix — α = 0.003, asymmetric distribution
(S ∼ U [−2;−1.6 ]), K = 3
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Fig. 6: Quantiles functions with S = −1.8 and K = 3

To conclude, the changes in rankings in most cases are relatively large, as
shown by the correlation matrix. This underlines the robustness of our ap-
proach. All these observations call for some comments. First, the three mSR
methods give somewhat different results when the distribution is not normal.
This result contradicts the findings of Lee & Higgins (2009), who noted similar
rankings in most instances for valuation-based property data in Australia us-
ing a similar approach (but without rearrangement and with a small deviation
from the normal distribution). The difference in rankings is significant even
for a distribution close to the normal. Second, the threshold level is important.
Particularly for a low threshold, a mSRCF without rearrangement should be
banned from practice (unfortunately, its use is common) as it may lead to
wrong and inaccurate results. Furthermore, the difference in correlation would
increase as the threshold decreases. Finally, our proposed approach should be
preferred, whatever be the distribution of returns, since it gives the same re-
sults as other approaches when the distribution is normal, but can also capture
deviations from the normal.

5 Conclusion

The traditional Sharpe ratio approach presents some limitations, making its
use tricky despite its popularity among practitioners. This ratio ignores the
possible non-normality of returns and can cause investors to invest inappro-
priately in risky assets. The modified Sharpe ratio approach, however, can
overcome these limitations. In particular, it relies on the modified V aR, a risk
metric based on the entire distribution of the returns since its computation
considers the third and fourth moments of distribution.
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The modified Sharpe ratio is based on CF expansion, a useful technique that
must be used with caution: the resulting distribution and quantile function
approximations can be non-monotone and therefore give wrong results. This
pitfall can be solved by using a rearrangement procedure introduced by (Cher-
nozhukov et al., 2009, 2010b) that helps to properly compute the modified
Sharpe ratio.

In this study, we showed how to properly use the modified Sharpe ratio (that
is, by using the rearrangement procedure). We demonstrated and highlighted
many results. First, we showed why our proposed approach should be pre-
ferred, whatever be the distribution of returns, as it gives the same results of
the other standard approaches when the distribution is normal but can also
capture any deviation from the normal. Second, the rearrangement procedure
should be used particularly when the threshold is low (below 1%). Third, and
finally, the rearranged modified Sharpe ratio becomes unavoidable as soon as
the distribution deviates from the normal to correctly estimate the perfor-
mance rankings.

The proposed methodology should be appealing to both practitioners and aca-
demics. Indeed, it is relatively easy to compute and facilitates the quantitative
risk management of real estate transactions. The modified Sharpe ratio is a
powerful tool to manage and to deal with portfolios exhibiting non-normal
returns; it is also useful when the returns display normal patterns because
the skewness and Kurtosis terms will cancel each other out. Our approach
will therefore remain relevant even with a normal distribution. The ratio is
therefore useful because many investments are volatile by nature and may not
always be driven by a normal distribution. Finally, this work shows the way
to many other applications and risk measurement, such as operational risk
management or rare events.
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A Appendix: Skewness and kurtosis

Given the probability distribution f(x) of the random variable X and a real-value added
function g(x), one defines the expectation E[g(X)] =

∫
g(x)f(x)dx, where the first mo-

ment is µ = E[X], and the higher central moments are defined as µn = E[(X − µ)n]. The
first task in almost all statistical analyses is to characterize the location and variability
of a dataset. This is captured by the moments of orders one and two, usually called the
mean µ and variance σ2 = µ2, respectively. A further characterization of the data often in-
cludes the standardized moments of orders three and four, called skewness, γ1 = µ3/σ3, and
kurtosis, β2 = µ4/σ4, respectively. These last two measures further describe the shape of a
probability distribution. We briefly state the significance of these two last parameters below.

Skewness measures the symmetry or, more precisely, the lack of symmetry. A distribution
or dataset is symmetric if it appears similar to the right and left of its center (the mean µ).
The skewness of any symmetric distribution, such as a Gaussian distribution, is necessarily
zero. Negative skewness coefficient values indicate skewed data to the left, whereas positive
values indicate skewed data to the right. Skewness to the left means that the left tail of the
distribution is long relative to the right tail.

Kurtosis indicates whether the data are peaked or flat relative to a normal distribution.
That is, datasets with high kurtosis tend to have a distinct peak near the mean, then de-
cline rather rapidly, and still show heavy tails. Datasets with low kurtosis tend to have a
flat top near the mean, rather than a sharp peak. The kurtosis formula measures the de-
gree of this peakedness; for instance, the kurtosis of a Gaussian distribution turns out to be 3.

Fig. 7: Right-skewed distribution (S = 1.75)
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Fig. 8: Fat-tailed distribution (K = 9)

B Appendix: The Rearrangement Procedure

This paper applies a procedure called rearrangement, or, more precisely, increasing rear-
rangement. We use this procedure to restore the CF expansion monotonicity. The procedure
is briefly described as follows.13.

Rearrangements can be conveniently considered to be a sorting operation: given the values
of a dataset, we simply sort the values in an increasing order. What is created is the rear-
ranged function.

Following Chernozhukov et al. (2010a,b), we define the procedure more precisely as follows.

“Let χ be a compact interval. Without loss of generality, we can conveniently take
this interval to be X = [0, 1]. Let f(x) be a measurable function mapping χ to K, a
bounded subset of R. Also, let Ff (x) =

∫
χ 1 {f(u) ≤ y} du denote the distribution

of f(x) when X follows the uniform distribution on [0, 1], and

f∗(x) = Qf (x) = inf
{
y ∈ R : Ff (y) ≥ x

}
be the quantile function of Ff (y). Thus,

f∗(x) = inf

{
y ∈ R :

[∫
χ
1 {f(u) ≤ y} du

]
≥ x

}
.

This function, f∗, is called the increasing rearrangement of the function f .”

In our approach, this allows for respecting one of the basic conditions of the probability
distribution function, monotonicity. Thus, the V aR becomes inversely proportional to the
threshold, and, as expected, one has V aR0.5% ≥ V aR5%.

The rearrangement procedure also has a practical implication, demonstrated by Cher-
nozhukov et al. (2010b): the resulting rearranged estimate has a smaller estimation error

13 In mathematics, the notion of rearrangement derives from the notion of permutation, and is re-
ported in the work of Bóna (2004). (Lorentz, 1953) can also be consulted
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(in the Lebesgue norm) than does the original estimate whenever the latter is not mono-
tone. This property is independent of the sample size and how the original approximation
is obtained. Thus, the benefits of using a rearrangement procedure in our paper are both
to obtain the estimates of the distribution satisfying the logically necessary monotonicity
restriction, and also to obtain better approximation properties.

C Appendix: Impact of number of assets

The number of assets simulated may also have a strong impact on the relevance of the
results. To illustrate the effect of number of assets, we compute Figure 9. Intuitively, the
higher the number of assets, the lower is the dispersion of distribution. The results are thus
more concentrated.

(a) 5 assets (b) 100 assets

Fig. 9: Correlation distributions according to the number of assets


